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Abrtrrct, An exact elastic-plastic solution is found for the stresses around a cir- 
cular hole in a sheet subjected to balanced biaxial tension at infinity. The sheet is ortho- 

tropic, but isotropic in its plane. The solution, based on a J, type of deformation theory 

together with a modified Ramberg-Osgood law, is rigorously valid for flow theory as well. 

Introduction, In 1946 Iliushin [l] stated his celebrated theorem concerning 
certain sufficient conditions for a linear dependence of stress on loading in a boundary- 

value problem of plasticity. Suppose that the traction is specified on all boundaries, 

with its spatial distribution invariant but its magnitude monotonically increasing. Iliushin 

observed that the stresses in the body vary linearly with the magnitude of the loading if 

the problem is solved on the basis of the simple Jz deformation theory of plasticity in 

conjunction with a pure-power law ~=-k5~’ for the uniaxial stress-strain relation. Under 
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Fig. 1 

these circumstances, the solutiorl will also 

be rigorously valid for .I, f 1 o 1~ theory 

because “proportional loading” - con- 

stant ratios of the stress components -- 
exist at each point. Finally, it may be 
noted that in a stress-concentration prob- 

lem, the stress-concentration factor 

would be independent of the loading 
magnitude ; indeed, it would only depend 
on the strain-hardening exponent /I 
It is evident that the pure-power law 

corresponds to a rigid-plastic material 
rather than an elastic-plastic one, such 
as that which would be described by the 
uniaxial Ramberg-Osgood relation E.-Y 
>= GE-1 -L kS1’ . In this latter case a 

stress-concentration factor would start 

out with its elastic value and approach 

the pure-power-law value as the loading increased. There would be no reason to expect 

proportional loading in the interior of th, 0 body, and hence the .j,! flow and deformation 

theories could be presumed to give different results. 
The plane stress problem of a circular hole in an infinite sheet subjected to balanced 

*) This work was supported in part by the National Aeronautics and Space Administra- 
tion under Grant NGL 22-007-012, and by the Division of Engineering and Applied Phys- 
its , Harvard IlniVerSity. 
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biaxial tension S at infinity (Fig. 1) was studied in @] on the basis of .I, deformation 
theory and the Ramberg-Osgood law. In this work a very useful manipulation which 

eliminated the space variable facilitated the solution. The sass-concentration factor 
x=%/S hole was found analytically for the pure-power-law case, corresponding to .9-, =; 
r!le transition from the elastic value K = 2 to the limiting power-law value was deter- 

mined numerically. As expected, there was not proportional loading in the interior of 
the sheet. 

The present paper is a sequel to paper @]. Instead of the Ramberg-Osgood law, a 
slightly modified uniaxial relation of the form 

e=-$ for [5/G& e.+ -$ 
I I 

R-l 
for ] 6 I > sy (1) 

u 

is assumed. It turns out that with this m~ification an exact analytic solution for K over 

the full range of S becomes possible on the basis of J, deformation theory (*). Further- 

more, as will be shown, the solution is then also exact for .I, flow theory. This remarka- 
ble situation occurs because, even though the requirement ot proportional loading is not 

met, it is violated only while stresses are in the elastic range. 
The problem of @] is generalized in this paper by consideration of materials that are 

orthotropic (as in p]), but remain isotropic in the plane of the sheet. With the use of 
appropriately modified elastic-plastic stress-strain relations of the .J, type, exact solu- 
tions are still obtained for all s. and the coincidence of flow and derormation theories 
continues to hold (** )_ 

Stresr-strain rrlrtfont, The plastic orthotropy of the sheet is conven- 
tionally characterized by the parameter R, defined on the basis of a uniaxial, in-plane 
tension test as the ratio of the transverse plastic strain in the plane of the sheet to the 

plastic strain trough the thickness. In the present plane stress problem, only the radial 
stress or and circumferential stress ogare involved, and the corresponding plastic strain 

rates p* and I$’ would be given l:y Hill’s [5] generalized flow theory as 

where o is the effective stress defined by 

and E, is the tangent modulus of the uniaxial stress-strain curve at the stress value o: 

The initial yield surface is defined by the ellipse o = or,_ For proportional loading, 
Eqs. (2) can be integrated to give the deformation theory form 

l ) That this would happen was suggested to the writer over ten years ago by Dr. J. M. 
Hedgepeth, and was verified by calculations made by Dr. 0. M. Mangasarian and the 
writer at that time. 

**) For the pure-power-law case, this orthotropic problem was recently solved by Yang 
[4] who exploited the same trick used in [Z] and [3] of eliminating the space variable. 
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where E, is the secant modulus on the uniaxial stress-strain curve at o. For future refer- 
ence, note that the integration is valid as long as or andcrs follow a radial line through 
the origin in the stress space when o > ou; . it obviously doesn’t matter if the stress path 
is curved when or and 00 are i n s i d e the initial surface. 

The elastic strains are 

EpF’ = + (3, - We), &sE = + (5s - W,) (5) 

where v is the Poisson’s ratio in the plane of the sheet. But now invoke the extended 

Michell theorem [6] which says that the s t r e s s es in the present problem do not depend 
on v. So choose v = H I (1 + R), and then the total strains follow from (4) and (5) as 

After the stresses are found, with the use of (6), the a c t u a 1 strain could be calcu- 

lated from (4) and (5) with the use of 
the true value of Poisson’s ratio. 

If the uniaxial relation (1) - shown 
nondimensionally in Fig. 2 for various 

values of n - is used, (1 / E,) is given 
in terms of the effective stress o as 

1 1 

Es =-r 
for 5 < 3., 

1 1 5 _ n-1 
K E 5!, / -C-l 

for 5 2 5,, (7) 

Boundary value problem 
and aolutlon. At infinity, we 

Fig. 2 
suppose that or = erg = s ;at the hole, 
where r = a , we have o,. = 0. In 

terms of the parameter h = s / d y, the solution exhibits three regimes. 

i) O<h&l/,. 
The well-known elastic solution for the stresses is 

og = s[l + (a/r)Y, or =s[l - (~/r)~l (8) 

It is easily verified that CJ takes on its largest value, 2 S , at r = a, so that (8) is 
valid for S 4 ‘/a(3 Y, and the stress-concentration factor 

K E us (a) / s = 2 for il < l/, 

ii) ‘i, < h S v1/2(1 + R). 
In this range, the effective stress o is less than oyat infinity, and so the stresses stay 

in the elastic range for r larger than some critical value r,,which depends on a. In 
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this elastic domain, the solution for the stresses can obviously be written in the form 

ug I oy = h [I + p(r* 1 r)21, G’r i uy = 3L [I - j3 (r,/r)21 (9) 
where p is a constant that depends on A. At r = r*, equilibrium requires continuity 
of or and continuity of the radial displacement u = r’eg implies continuity of ~0. It 

follows, then, from (6). that 00 and 6 are also continuous, and so (T, as calculated from 

(9) at r = r*, must equal o,.This provides the value 

(10) 
and only r* remains to be determined as a function of h. 

In the plastic domam r -< r* , the solution is effected as follows. Combining (as in 
p]) the equilibrium equation 

-3 $ + (3, - 00) = 0 
(11) 

and the compatibility equation 

d&s / dr + (CO - E,.) / r = 0 (12) 
gives d?. d&e = 

00 - Gr % - El3 (13) 

which does not contain r explicitly. Introducing the stress-strain relation (6) (as in [3]) 
leads to 

The substitution 
sc,=-;f2+2R 

> 

q=+f2+2R cosa- 

in terms of the parameter a satisfies (3) identically, and the fact that, by 

(-$-)-‘o-&(-j--)=n-1 

for d _> cil, , reduces (14) to 

[(n + 1 + 2R) cos u + (n - 1) 1/ 1 + 2R sin al do 

= (2 + 2R)a sin C&X 

in the plastic domain. 

(14) 

(15) 

(7)s 

At r = r.+, a takes on the value a,determined by the requirement that (15),with 
0=0 I/ , agree with (9). Thus, 

a,=arctg~1/2(1$-H)h-2-1 (17) 

Integrating the differential equation (16), with the initial condition (3 = 0 U at a = M*, 

then gives ~ .~ 
IL+l+2R+(n-l)1/1+~.H l/yz(l+R)A-‘L-l -= 

‘“x 

5 l/‘/z(l+ H) h-“[(IL+ I+ 2R)cosa+ (n-1) 1/i + 2H sinu] ) II 

x esp 
(n-1) r/i +2fi n+1+2K 

n2f1+2H r&j-l+-%H (18) 



22 Ilernard ~udiansky 

At the hole, or ~7 IJ and hence, by (15), c( at the hole takes on the value 

a, = arc tg V’!&XX (19) 
Hence, the stress concentration factor is 

for l/a < a< V l/2(1 + H). C ombining (18) and (20) provides an alternative expres- 
sion for o in the form 

The stresses in the plastic domain are now given by Eqs. (15), with CC* ,( 3 < c(, , 
and u given by (21). We must, however. relate r to 3 in the range r* > r > a in 
order to find the spatial distribution of the stresses. 

From the equilibrium equation (11) and the use of (15) 
llr 

.___ 

-_ 

r 
~-1/~+2Kda-~-_t,1/1+2Rctgx-l]~ 

Elimination of o-i& with the help of (16) provides a first order differential equa- 

tion in r and a which can be integrated, with the initial condition a =z ~1,~ at r == a 

to give 

(n + 1 i_ IIR) cm r + (IL - 1) 1/l -I- :!R sin I ’ y 
-- 

II a/:! + 1lR ) 
x (22) 

:,: exp i 
(n2 - 1) 1/l + 4R 

j “(df 1 + ?R) (% - ‘) 

This is valid for U, < a < x,. It is remarkable that r does not depend on h. This 

means (see (15)) that once the stress state at any point in the sheet enters the plastic 

range, the ratio cra!u, remains constant. In other words, proportional loading occurs for 

o 2 o1,. 
The location rg of the elastic-plastic boundary, found by setting CC = xx in (‘2~). 

is given by 

n + 1 + ‘R ml- (n - 1) 1/l + “R 1/‘/2(1--R) h2--1 
n (1 + R) k-1 X 

Now the stresses are everywhere in the plastic range, and the integration of (16) is 
executed with the initial condition a =: 0. CT -z s f/2 / (1 + R) implied by 00 := 

= 0,. = S at infinity. The result is 

n+l+%R 

(n+1+2R)c0s~~+(n-l)1/1+~Rsina 



Elastic-plastic stress-concentration problem 23 

and then K, found by setting a = a, in (24), is 

For R = 1 , this is the same as the pure-power-law result given in p]; with due 
regard for notational differences, it checks the pure-power-law result for arbitrary R 
found in [4]. 

The formula (22) for r remains valid, but, of course, r* is now infinite. 

Diacunrlon of reaulta. To sum up, the stress-concentration factor K.,as a 
function of ?L.- = s / cr!, is given by 

K = 2 for L < 1/z 

Eq. (20) for r;a < h < ( ‘/2 (1 + Ii))‘,‘? 

Eq. (25) for ?L > (‘is (1 + R))‘/z 

For R = 1 , these results are plotted in Fig. 3 for several values of n. Note that for 
n ~.= 00, K- 1 13, for L > r/s, and the curve of K vs. 1” must end at h= 1, since 
the applied stress at infinity can not exceed S . 

Fig. 3 Fig. 4 

Numerical calculations show that for 1 > l/‘s, K is slowly decreasing function of 

11. For fi == 1 , the radius r+ of the plastic region, given by Eq. (23), is shown in Fig. 4, 
as a function of ?L, for n = ;i and n =z 00. Evidently ry is fairly insensitive to n. 

It is amusing to study the stress histories at various values of F / a. Fig. 5a shows 

how such histories,for R = 1 and n = 3, at F / a = 1, 1.1, 1.3, 1.7, 2.5and 
00 , exhibit four regimes. Up to S = l/s 0 g , the stresses are everywhere in the elastic 

range, and the radial stress paths are governed by Eqs. (8). The initial regime I in Fig. 3 
is bounded by the line os i or, + b, ! oy == 1. 

As S is further increased, the stresses at any given value of r/a remain elastic (in 
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regime II) until the stress path, governed now by Eqs. (9). hits the Mises yield surface 
shown by the dotted line. In regime II, the stress paths for points in the interior of the 

sheet are curved. In regime III, the sheet is partially plastic, and the stresses are given 

by (15), where z is given implicitly in terms of r/a by (22). In this regime, the loading 

is again “proportional” - but the magnitudes of the stresses vary linearly with (i.f<\ , as 

shown by (21). and hence are nonlinear functions of S . Finally, in regime IV, me sheet 

is everywhere plastic, the stress paths continue on the radial paths of regime III, but now 

the stresses are proportional to 3s. The upshot of all this is that the present results are 
rigorously correct for .Tzflow theory as well as for .rz deformation theory, since propor- 

a 

Fig. 5 a, b, c 

used herein, can be generated for other problems with radial symmetry ; radial stresses 

tional loading occurs at every point in the 
sheet once 0 exceeds CT!,. 

A similar set of stress paths is shown in 
Fig. 5b for R == 1, II 9, showing how 
regime III shrinks in size with increasing n. 

Finally, Fig. 5c shows the stress paths for 
12 ~~ iy). Here, regimes III and IV collapse 
into the Mises yield surface, since 0 can not 

exceed (TV. In all cases, the stress paths have 
continuous slopes at the interface between 
regime I and II; in the case IZ = 00 , the 
stress paths hit the yield surface with vertical 

slopesfor O(r/a(oo. 

Concluding remark:, Similar 
exact solutions, tied to .J2 deformation theory 
and the special uniaxial stress-strain curves 
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applied at the hole, plates of finite radius, and so on. However, the extraordinary validity 
of the present solution for both J, flow theory and J, deformation theory need not hold 
in other cases. 

Diagrams. 

Fig. 1 Balanced biaxial tension on infinite sheet with hole. 

Fig. 2 Nondimensional stress-strain curves. 

Fig. 3 Variation of stress-concentration factor with applied stress, R = 1 , 

Fig. 4 Size of plastic region ; R = 1. 

Fig. 5 a Stress paths at various values of r/ a ; H = 1 , n = 3. 

Fig. 5 b Stress paths at various values of r / a ; R = 1 , n = 9. 

Fig. 5 c Stress paths at various values of r/a ; I! = 1 , n = 00, 
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